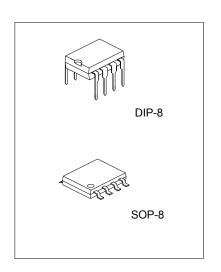
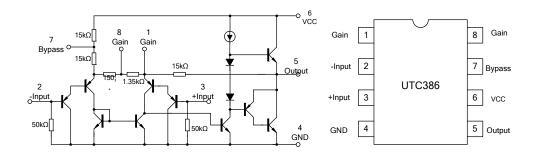
LOW VOLTAGE AUDIO POWER AMPLIFIER


DESCRIPTION

The UTC386 is a power amplifier designed for use in low voltage consumer applications. The gain is internally set to 20 to keep external part count low, but the addition of an external resistor and capacitor between pins 1 and 8 will increase the gain to any value up to 200.


The inputs are ground referenced while the output is automatically biased to one half the supply voltage. The quiescent power drain is only 24 milliwatts when operating from a 6 volt supply, making the UTC386 ideal for battery operation.

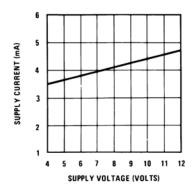
FEATURES

- *Battery operation
- *Minimum external parts
- *Wide supply voltage range:4V~18V
- *Low quiescent current drain(4mA)
- *Voltage gains:20~200
- *Ground referenced input
- *Self -centering output quiescent voltage
- *low distortion

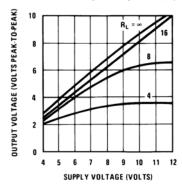
BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

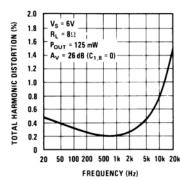
71262672 III Ballion (14 25 6)									
Characteristic		Symbol Value		Unit					
Supply Voltage		Vcc	22	V					
Input voltage		Vi	-0.4~+0.4	V					
Power Dissipation	DIP-8	Pd	1250	mW					
	SOP-8	Pu	600	mW					
Storage Temperature		Tstg	-65 to 150	°C					
Operating Temperature		Topr	0 to 70	°C					
Junction Temperature		Tjun	150	°C					

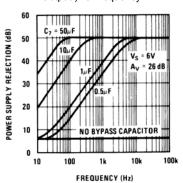

ELECTRICAL CHARACTERISTICS

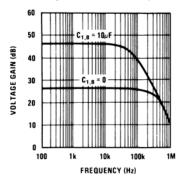
(Vcc=6V, f=1kHz, Ta=25°C, All voltage referenced to GND unless otherwise specified)

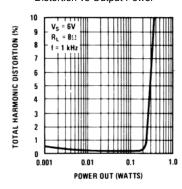

Characteristic	Symbol	Test Condition	Min	Тур.	Max	Unit
Operating Supply Voltage	Vs		4		18	V
Quiescent current	IQ	Vs=6V, Vin=0		4	8	mA
Output Power	Pout	Vs=6V, RL=8Ω, THD=10%	250	325		mW
Output Power		Vs=9V, RL=8Ω, THD=10%	500	700		mW
Voltago Cain	Av	Vs=6V, f=1kHz		26		dB
Voltage Gain		10μF from pin 1 and pin 8		46		dB
Bandwidth	BW	Vs=6V, Pin1 and 8 open		300		kHz
Total harmonic distortion	THD	Vs=6V, RL=8Ω, Pout=125mW, f=1kHz, pin1 and pin 8 open		0.2		%
Power supply Volatge Rejection Ratio	PSRR	Vs=6V, f=1kHz, C _{bypass} =10μF, pin1 and pin 8 open, Referred to Output		50		dB
Input Resistance	Rin	Vs=6V, Pin2 and pin 3 open		50		kΩ
Input Bias current	IBIAS	Vs=6V, Pin2 and pin 3open		250		nA

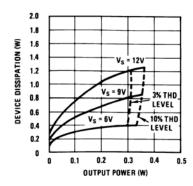
TYPICAL PERFORMANCE CHARACTERISTICS

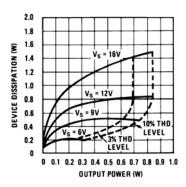

Quiescent Supply Current vs Supply Voltage

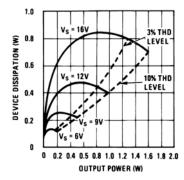

Peak-to-Peak Output Voltage Swing vs Supply Voltage


Distortion vs Frequency

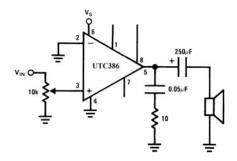

Power Supply Rejection Ratio (Referred to the Output) vs Frequency


Voltage Gain vs Frequency

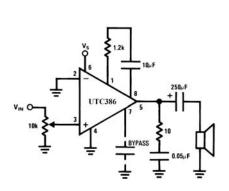

Distortion vs Output Power


Device Dissipation vs Output Power —4ΩLoad

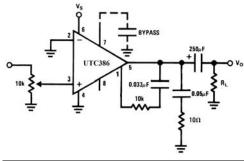
Device Dissipation vs Output Power —8Ω Load

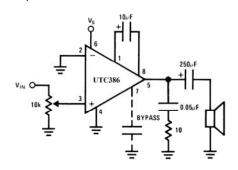


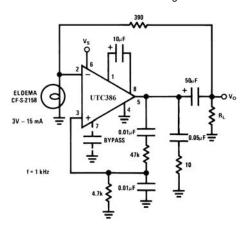
Device Dissipation vs Output Power — 16Ω Load

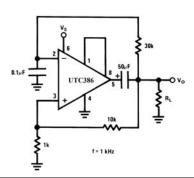


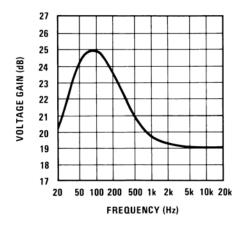
TYPICAL APPLICATIONS

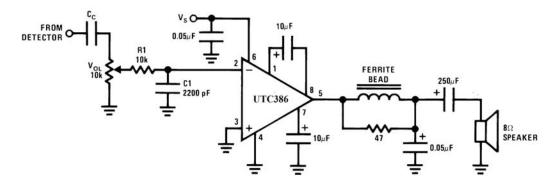

Amplifier with Gain = 20 Minimum Parts

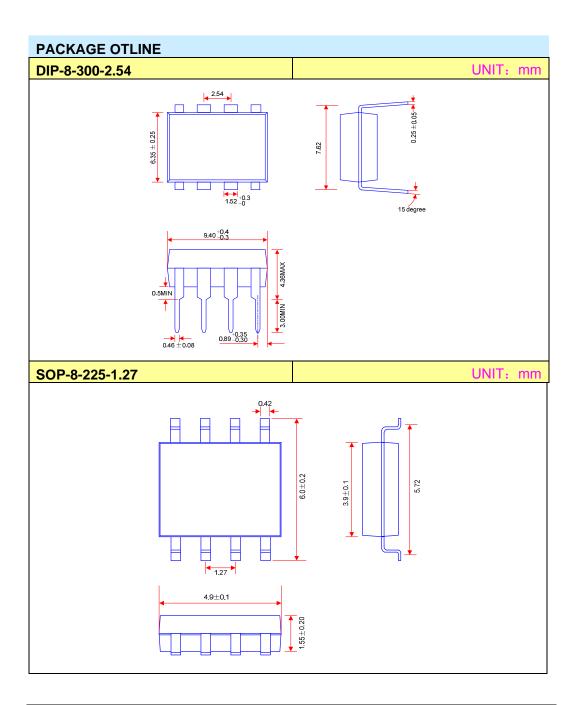

Amplifier with Gain = 50


Amplifier with Bass Boost


Amplifier with Gain = 200


Low Distortion Power Wienbridge Oscillator


Square Wave Oscillator



Frequency Response with Bass Boost

AM Radio Power Amplifier

ELECTROSTATIC DISCHARGE CAUTION

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage handing to prevent electrostatic damage to the device.

NOTICE

HANGZHOU YOUWANG ELECTRONICS CO.LTD assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all HANGZHOU YOUWANG ELECTRONICS CO.LTD's products described or contained herein. HANGZHOU YOUWANG ELECTRONICS CO.LTD's products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.