

TGS 832 - for the detection of Chlorofluorocarbons (CFC's)

Features:

- * High sensitivity to R-134a
- * Quick response to R-134a
- * Improved selectivity
- * Long term stability
- * Uses simple electrical circuit
- * Ceramic base resistant to severe environment

Applications:

* Refrigerant leak detector

The sensing element of Figaro gas sensors is a tin dioxide (SnO2) semiconductor which has low conductivity in clean air. In the presence of a detectable gas, the sensor's conductivity increases depending on the gas concentration in the air. A simple electrical circuit can convert the change in conductivity to an output signal which corresponds to the gas concentration.

The TGS 832 has high sensitivity to R-134a, the most promising alternative to R-12, commonly used in air conditioning systems and refrigerators. R-12 and R-22 are also detectable by TGS 832. With its good long term stability, TGS 832 is an excellent, low-cost sensor for CFC detection.

The figure below represents typical sensitivity char-acteristics, all data having been gathered at standard test conditions (see reverse side of this sheet). The Y-axis is indicated as sensor resistance ratio (Rs/Ro) which is defined as follows:

> Rs = Sensor resistance of displayed gases at various concentrations

> Ro = Sensor resistance at 100ppm of R-134a

The figure below represents typical temperature and humidity dependency characteristics. Again, the Y-axis is indicated as sensor resistance ratio (Rs/Ro), defined as follows:

> Rs = Sensor resistance at 100ppm of R-134a at various temperatures/humidities Ro = Sensor resistance at 100ppm of R-134a at 20°C and 65% R.H.

Sensitivity Characteristics:

Temperature/Humidity Dependency:

Structure and Dimensions:

(1) Sensing Element:

SnO2 is sintered to form a thick film on the surface of an alumina ceramic tube which contains an internal heater.

Sensor Base:

Alumina ceramic

3 Flame Arrestor:

100 mesh SUS 316 double gauze

Pin Connection and Basic Measuring Circuit:

The numbers shown around the sensor symbol in the circuit diagram at the right correspond with the pin numbers shown in the sensor's structure drawing (*above*). When the sensor is connected as shown in the basic circuit, output across the Load Resistor (VRL) increases as the sensor's resistance (Rs) decreases, depending on gas concentration.

Standard Circuit Conditions:

ltem	Symbol	Rated Values	Remarks
Heater Voltage	VH	5.0±0.2V	AC or DC
Circuit Voltage	Vc	Max. 24V	AC or DC *PS≤15mW
Load Resistance	RL	Variable	*PS≤15mW

Basic Measuring Circuit:

Electrical Characteristics:

Item	Symbol	Condition	Specification
Sensor Resistance	Rs	R-134a at 100ppm/air	4kΩ ~ 40kΩ
Change Ratio of Sensor Resistance	Rs/Ro	Rs (R-134a at 300ppm/air) Rs (R-134a at 100ppm/air)	0.50 ~ 0.65
Heater Resistance	Rн	Room temperature	$30.0\pm3.0\Omega$
Heater Power Consumption	Рн	VH=5.0V	835 ± 90mW

Standard Test Conditions:

TGS 832 complies with the above electrical characteristics when the sensor is tested in standard conditions as specified below:

Test Gas Conditions: $20^{\circ}\pm2^{\circ}\text{C}$, $65\pm5^{\circ}\text{R.H.}$ Circuit Conditions: $Vc = 10.0\pm0.1\text{V}$ (AC or DC), $VH = 5.0\pm0.05\text{V}$ (AC or DC),

 $RL = 10.0k\Omega \pm 1\%$

Preheating period before testing: More than 7 days

Sensor Resistance (Rs) is calculated by the following formula:

$$Rs = (\frac{Vc}{VRL} - 1) \times RL$$

Power dissipation across sensor electrodes (Ps) is calculated by the following formula:

$$Ps = \frac{Vc \times Rs}{(Rs + Rt)}$$