

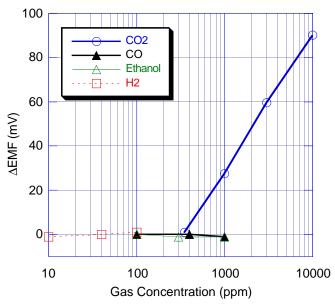
TGS 4161 - for the detection of Carbon Dioxide

Features:

- * High selectivity to CO2
- * Compact size
- * Low dependency on humidity
- * Long life and low cost
- * Low power consumption

TGS4161 is a new solid electrolyte CO₂ sensor which offers miniaturization and low power consumption. A range of 350~10,000ppm of carbon dioxide can be detected by TGS4161, making it ideal for indoor air control applications.

The CO₂ sensitive element consists of a solid electrolyte formed between two electrodes, together with a printed heater (RuO₂) substrate. By monitoring the change in electromotive force (EMF) generated between the two electrodes, it is possible to measure CO₂ gas concentration.


The top of the sensor cap contains adsorbent (zeolite) for the purpose of reducing the influence of interference gases.

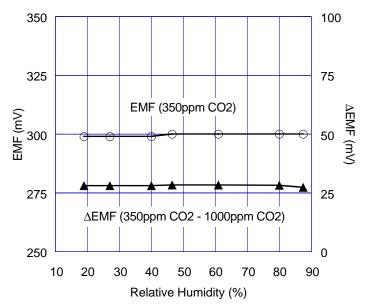
TGS4161 exhibits a linear relationship between \triangle EMF and CO₂ gas concentration on a logarithmic scale. The sensor displays good long term stability and shows excellent durability against the effects of high humidity.

The figure below represents typical sensitivity characteristics of TGS4161. The Y-axis is indicated as ΔEMF which is defined as follows:

∆EMF=EMF1 - EMF2 where EMF1=EMF in 350 ppm CO₂ EMF2=EMF in listed gas concentration

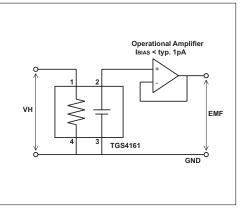
Sensitivity Characteristics:

Applications:


- * Indoor air quality control
- * CO2 monitors

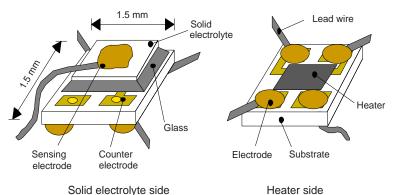
The figure below shows typical humidity dependency of TGS4161. Again, the Y-axis is indicated as ΔEMF which is defined as follows:

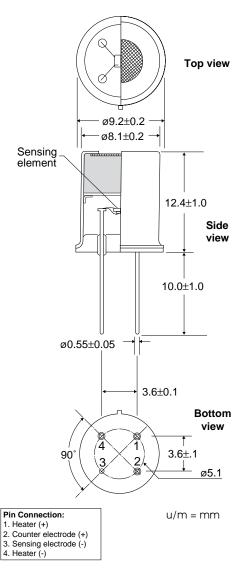
∆EMF=EMF1 - EMF2 where EMF1=EMF in 350 ppm CO2 EMF2=EMF in 1000ppm CO2


Humidity Dependency:

Basic Measuring Circuit:

The TGS4161 sensor requires heater voltage (V_H) input. The heater voltage is applied to the integrated heater in order to maintain the sensing element at a specific temperature which is optimal for sensing. Electromotive force (EMF) of the sensor should be measured using a high impedance (>100 GΩ) operational amplifier with bias current < 1pA (e.g. Texas Instruments' model #TLC271). Since the solid electrolyte type sensor


functions as a kind of battery, the EMF value itself would drift using this basic measuring circuit. However, the change of EMF value (Δ EMF) shows a stable relationship with the change of CO₂ concentration. Therefore, in order to obtain an accurate measurement of CO₂, a special microprocessor for signal processing should be used with TGS4161. Figaro can provide a special evaluation sensor module (AM-4-4161) for TGS4161.


Specifications:

Model number			TGS 4161	
Sensing element type			Solid electrolyte	
Target gases			Carbon dioxide	
Typical detection range			350 ~ 10,000 ppm	
Electrical characteristics	Heater resistance	Rн	$70\pm7\Omega$ at room temp.	
	Heater current	Ін	approx. 50mA	
	Heater power consumption	Рн	approx. 250mW	
	Electromotive force	EMF	220~490mV in 350ppm CO2	
	Sensitivity	ΔEMF	44~72mV	EMF(350ppm CO2)- EMF(3500ppm CO2)
	Heater voltage	Vн	5.0 ± 0.2V (DC)	
Sensor characteristics	Response time		approx. 1.5 min. (to 90% of final ∆EMF value)	
	Measurement accuracy		approx. ±20% at 1,000ppm CO2	
Operating conditions			-10~50°C, 5~95%RH	
Strorage conditions			-20~60°C, 5~90%RH (store in moisture proof bag with silica gel)	
Standard test conditions	Test gas condition		CO₂ in air at 20±2°C, 65±5%RH	
	Circuit condition		VH = 5.0±0.05V DC	
	Conditioning period before test		12 hours or longer	

Sensing Element Structure:

Structure and Dimensions:

