と セチェ器件一站式配套服务 General Lighting LED Driver Data sheet

8 Channel High Power Constant Current LED Driver

Features

- 20mA~150mA, 8 channels constant current regulator
- Output current adjustable by external resistor
- 3V ~ 12V wide range supply voltage
- 1MHz OE PWM dimming support
- 0V ~ 17V output sustain voltage
- low output voltage dropout
 0.4V @ 40mA/ch (total 320mA output)
 0.7V @ 150mA/ch (total 1.2A output)
- Minimized I_{DD} consumption
- Low speed V_{DD} dimming support
- 160° C half power thermal protect
- Less than ±4% chip current skew
- Less than $\pm 4\%$ channel to channel current skew
- Less than 0.5%/V line regulation
- Less that 1%/V load regulation
- 25nS channel stagger output
- Green package

Product Description

The NU508 is a dedicated designed constant current LED driver for general lighting. It can drive 8 channel LEDs simultaneously and provide each channel sink current up to 150mA.

The wide range of power supply capability makes the NU508 be driven easily by a simple circuit. For example, using a zener diode lowers down the V_{LED} voltage for V_{DD} or just routing V_{DD} pin into the LED loading loop gets popper voltage for NU508.

In the application of dimming function, the OE pin can switch all output channels on or off simultaneously with 25nS time stagger between odd and even channels. The fast transient speed of OE function in NU508 is best for most of dimming requirements and the stagger function will lower the EMI generation in fast dimming situation.

While in full current output, the NU508 only need about 0.6V drop on each output channel. This makes NU508 to be the lowest power lost LED driver that compared with the other types of LED drivers. The minimized voltage drop in NU508 will increase the efficiency of entire lighting system and lower the heat generation from LED driver.

Applications

- General LED Lighting
- Decoration lighting for architecture
- LCD back lighting
- Street lamp

Package Type

• TSSOP 173 mil 20 pin

VDD 🗖	1 ●	20 🗖 GND
NC 🗖	2	19 🗖 NC
OE 🗖	3	18 🗖 REXT
NC 🗖	4	17 🗖 NC
OUTO	5	16 🗖 OUT7
OUTI	6	15 🗖 OUT6
OUT2	7	14 🗖 OUTS
OUT3 🗖	8	13 🗖 OUT4
NC 🗖	9	12 🗖 NC
NC 🗖	10	11 🗖 NC

Terminal Description

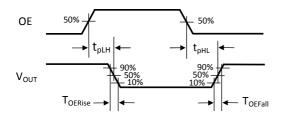
Pin #	Pin name	Function
1	VDD	Power supply
2	NC	
3	OE	Output enable
4	NC	
5	OUT0	Output channel 1
6	OUT1	Output channel 2
7	OUT2	Output channel 3
8	OUT3	Output channel 4
9	NC	
10	NC	
11	NC	
12	NC	
13	OUT4	Output channel 5
14	OUT5	Output channel 6
15	OUT6	Output channel 7
16	OUT7	Output channel 8
17	NC	
18	REXT	R external
19	NC	
20	GND	Ground

Maximum Ratings (T = 25°C)

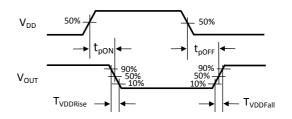
Characteristic	Symbol	Rating	Unit
Supply voltage	V _{DD}	3.0 ~ 16	V
Output sustain voltage (Output off)	V _{OUT}	-0.2 ~ 20	V
Input voltage	V _{OE}	-0.2 ~ V _{DD}	V
Output current per channel	Ι _{ουτ}	20~200	mA
Ground terminal current	I _{GND}	1.2	А
Power Dissipation (On PCB)	PD	1	W
Thermal Resistance	R _{TH(j-a)}	33.3	°C /W
Operating temperature	T _{OPR}	-40 ~ +130	°C
Storage temperature	T _{STG}	-55 ~ +150	°C

Electrical Characteristics and Recommended Operating Conditions

Characteristic	Symbol	Condition	Min.	Тур.	Max.	Unit	
Supply voltage	V _{DD}	Room Temp.	3	-	12	V	
		V _{DD} = 5V, I _{OUT} = 20mA * 8	0.3	-	6.3	V	
Output drop out voltage (Due to P _D limitation, drop out	V	V _{DD} = 5V, I _{OUT} = 40mA * 8 0.4 -		3.2	V		
voltage is not sustaining	V _{OUT}	V _{DD} = 5V, I _{OUT} = 80mA * 8	0.5	-	1.6	V	
voltage)		V _{DD} = 5V, I _{OUT} = 150mA * 8	0.6	-	1	V	
Output current/channel	I _{OUTn}	-	20	-	150	mA	
Bit current skew	دار	I _{OUTn} = 20mA	-	-	<u>±</u> 4	%	
V _{DD} >=3V	dI _{OUT1}	I _{OUTn} = 150mA	-	-	±4		
Chip average current skew V _{DD} >=3V	dl _{out2}	I _{OUTn} = 20mA	-	±2	<u>±</u> 4	%	
		I _{OUTn} = 150mA	-	±2	±4		
Leakage	$I_{Leakage}$	V _{OUT} = 10V	-	-	0.5	uA	
	V _{IH}	$V_{DD} < 5V$	-	0.7*V _{DD}	-	v	
OE Input voltage		V _{DD} >= 5V	-	3.5	-		
	V _{IL}	-	-	0.3*V _{DD}	1.5	1	
Pull down resistor (OE)	R _{PD}	-	400	500	700	KΩ	
Line regulation	%/V _{DD}	3V < V _{DD} < 12V	-	-	0.5	∆%/∨	
Load regulation	%/V _{OUT}	0.5V < V _{OUT} < 8V	-	-	1	∆%/V	
Operating Temperature	T _{OPR}	Ambient temperature	-40	-	85	°C	
Thermal protect (Junction temperature)	T_{HalfP}	Half current output	-	160	-	°C	

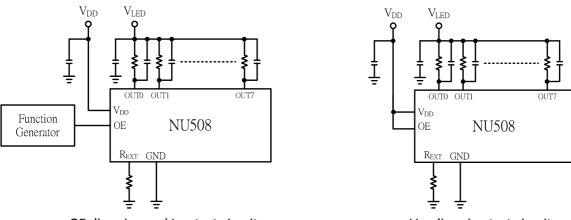


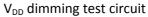
Characteristic	Symbol	Condition	Min.	Тур.	Max.	Unit
Thermal regulation	%/10 ℃	-		-	0.5	∆%/10 °C
Supply current	I _{DD1}	R _{EXT} = Open, All output off	-	0.3	1	mA
	I _{DD2}	$\rm R_{EXT}$ = 900 Ω , All output off	-	3	4	mA
	I _{DD3}	R_{EXT} = 900 Ω , All output on	-	3	4	mA
	I _{DD4}	$\mathrm{R}_{\mathrm{EXT}}$ = 600 Ω , All output on	-	5	6	mA

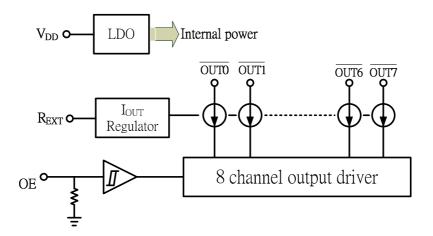

Switching Characteristics (T = 25°C)

Characteristic	Symbol	Condition	Min.	Тур.	Max.	Unit
Propagation Delay Time (OE from "L" to "H")	t _{pLH}	V_{DD} =4V, V_{OUT} =1V, I_{OUT} =120mA, OE= 0V \rightarrow 4V	300	380	440	nS
Output current rising time (OE from "L" to "H")	t _{OERise}	V_{DD} =4V, V_{OUT} =1V, I _{OUT} =120mA, OE= 0V \rightarrow 4V	100	120	160	nS
Propagation Delay Time (OE from "H" to "L")	t _{pHL}	V_{DD} =4V, V_{OUT} =1V, I_{OUT} =120mA, OE= 4V \rightarrow 0V	300	380	440	nS
Output current falling time (OE from "H" to "L")	t _{OEFall}	V_{DD} =4V, V_{OUT} =1V, I_{OUT} =120mA, OE= 4V \rightarrow 0V	100	120	160	nS
Propagation Delay Time (V _{DD} from "L" to "H")	t _{pON}	V_{OUT} =1V, I_{OUT} =120mA, V_{DD} =OE= 0V \rightarrow 3V	-	90	-	uS
Output current rising time (V _{DD} from "L" to "H")	t_{VDDRise}	V_{OUT} =1V, I_{OUT} =120mA, V_{DD} =OE= 0V \rightarrow 3V	-	120		uS
Propagation Delay Time (V _{DD} from "H" to "L")	t_{pOFF}	V_{OUT} =1V, I_{OUT} =120mA, V_{DD} =OE= 3V \rightarrow 0V	-	70	-	nS
Output current falling time (V _{DD} from "H" to "L")	t _{vDDFall}	V_{OUT} =1V, I_{OUT} =120mA, V_{DD} =OE= 3V \rightarrow 0V	-	120		nS

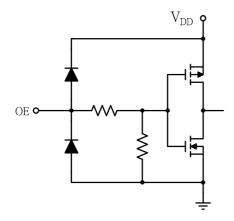
Timing Waveform


OE timing diagram


 V_{DD} timing diagram

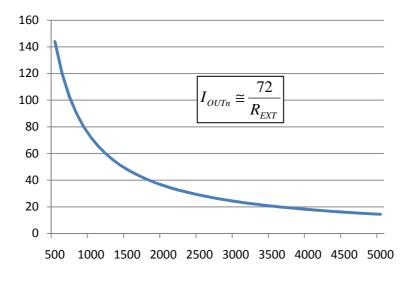

Test Circuit

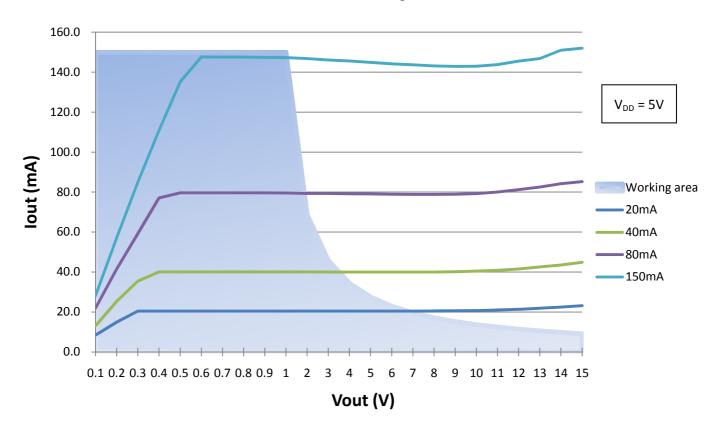
OE dimming and I_{OUT} test circuit



Block Diagram

Equivalent Circuits for Inputs

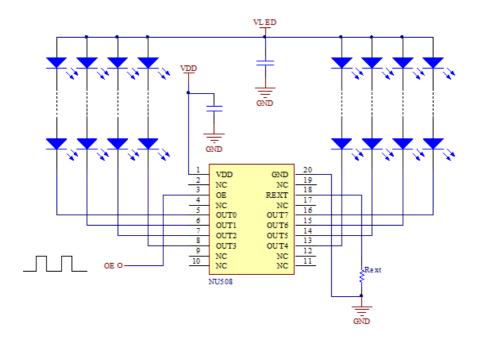

There is only one OE input terminal to which a pull down resistor is connected. While OE is high voltage, all output channels are turned on.



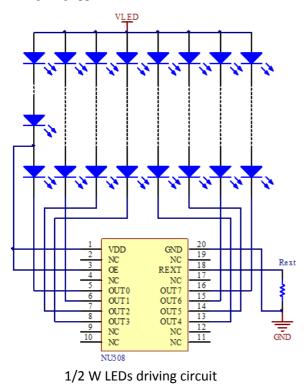
Output Current Setting

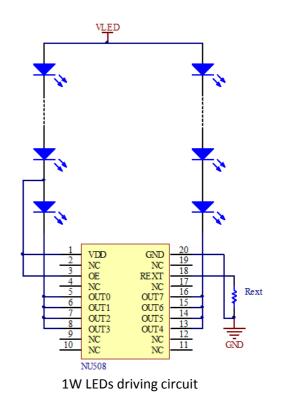
The output current of each channel of NU508 is set by an external resistor (R_{EXT}). The relationship between output current and external resistor is shown in the figure or calculated from the equation following.

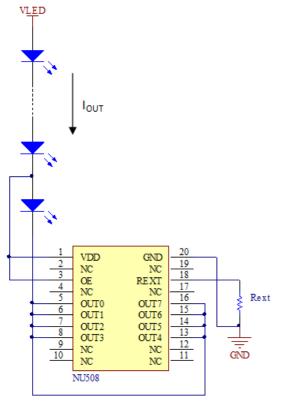
I/V Curve



I_{OUT} vs. V_{OUT} curve (Single channel)




Typical Application Circuit


Dimming application

• General lighting application

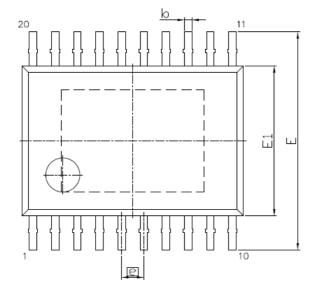
3 W LEDs driving circuit

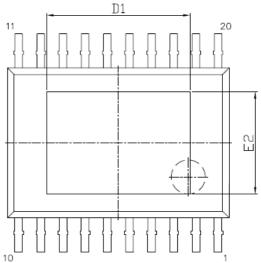
Note:

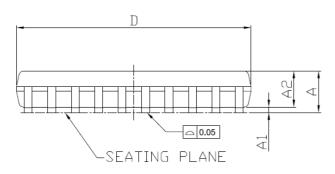
1. For the heat consideration on driver, V_{OUT} of NU508 should be minimized. The power calculation equation is shown as bellow.

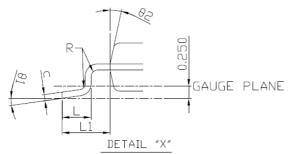
$$V_{OUT} = VLED - V_F * n$$

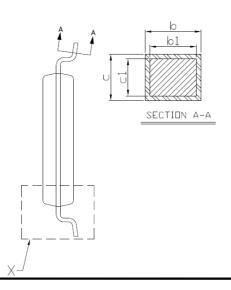
 $\mathbf{P}_{\mathsf{D}} = \mathbf{V}_{\mathsf{OUT}} * \mathbf{I}_{\mathsf{OUT}}$

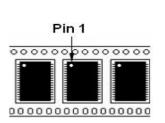

Where V_{OUT} is the average voltage on output pins, I_{OUT} is total output current of NU508, V_F is voltage drop of LED and **n** is the number of LEDs.


In some higher V_{OUT} applications, to series a proper resistor in output current path can decrease the V_{OUT} and get less heat generation from NU508.


- 2. For the efficiency consideration, higher VLED voltage and more LEDs in current path will get higher electrical efficiency. With the wide range supply voltage design and self powering structure like the lighting application circuit on this page, NU508 can be used in high voltage power system. Even the system power voltage is much higher than the maximum voltage of NU508, it works well.
- 3. More LED in series, the total voltage drop variation on LEDs will increase. This variation is derived from the different V_F bins of LEDs and LED temperature increasing while system is working. That probably increases P_D . So, it is another trade off to select the proper VLED voltage and the number of LEDs in system. The more output current is driving, the less LED in series is better.




Package Dimensions



SYMBOL	DIMENSION (MM)			DIMENSION (MIL)			
STMBUL	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	
Α	-	-	1.20	-	-	47.0	
A1	0.00	-	0.15	0,0	-	5.9	
A2	0.80	1.00	1.05	31.5	39.4	41.3	
b	0.19	-	0.30	7.5	-	11.8	
b1	0.19	0.22	0.25	7.5 8.7 9.8			
С	0.09	-	0.20	3.5 - 7.9			
с1	0.09	-	0.16	3.5	-	6.3	
D	6.40	6.50	6.60	252.0	256.0	260.0	
D1	3.80	4.00	4.20	149.6	157.0	165.0	
E	6,40 BSC			252.0 BSC			
E1	4.30	4,40	4,50	169.3	173.2	177.2	
E2	2.60	2,80	3,00	102.3	110.0	118,0	
e		0.65 BSC		25.6 BSC			
L	0,45	0.60	0.75	17.7	23.6	29.5	
L1	1.00 REF				39.4 RE	F	
R	0.127	-	-	5.0	-	-	
θ1	0°	-	8°	0°	-	8°	
92	12° REF				12° R	EF	

pecification

Q'TY/REEL	
2,500 ea	

