Power MOSFET

-60 V, -12 A, P-Channel DPAK

This Power MOSFET is designed to withstand high energy in the avalanche and commutation modes. Designed for low-voltage, highspeed switching applications in power supplies, converters, and power motor controls. These devices are particularly well suited for bridge circuits where diode speed and commutating safe operating areas are critical and offer an additional safety margin against unexpected voltage transients.

Features

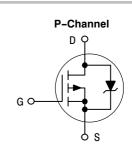
- Avalanche Energy Specified
- I_{DSS} and V_{DS(on)} Specified at Elevated Temperature
- Designed for Low-Voltage, High-Speed Switching Applications and to Withstand High Energy in the Avalanche and Commutation Modes
- Pb-Free Packages are Available

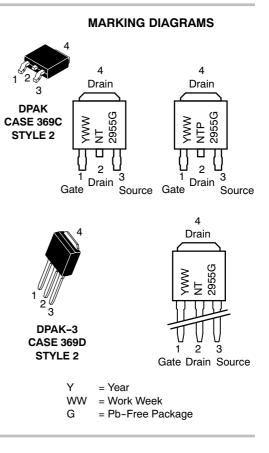
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

· · · · · · · · · · · · · · · · · · ·				
Rating	Symbol	Value	Unit	
Drain-to-Source Voltage	V _{DSS}	-60	Vdc	
Gate-to-Source Voltage - Continuous - Non-repetitive (t _p ≤ 10 ms)	V _{GS} V _{GSM}	± 20 ± 25	Vdc Vpk	
Drain Current - Continuous @ T _a = 25°C - Single Pulse (t _p ≤ 10 ms)	I _D I _{DM}	-12 -36	Adc Apk	
Total Power Dissipation @ $T_a = 25^{\circ}C$	PD	55	W	
Operating and Storage Temperature Range	T _J , T _{stg}	- 55 to 175	°C	
$ \begin{array}{l} \mbox{Single Pulse Drain-to-Source Avalanche} \\ \mbox{Energy - Starting } T_J = 25^\circ\mbox{C} \\ \mbox{(V}_{DD} = 25\ \mbox{Vdc}, \ \mbox{V}_{GS} = 10\ \mbox{Vdc}, \ \mbox{Peak} \\ \mbox{I}_L = 12\ \mbox{Apk}, \ \mbox{L} = 3.0\ \mbox{mH}, \ \mbox{R}_G = 25\ \mbox{\Omega}) \end{array} $	E _{AS}	216	mJ	
Thermal Resistance – Junction-to-Case – Junction-to-Ambient (Note 1) – Junction-to-Ambient (Note 2)	R _{θJC} R _{θJA} R _{θJA}	2.73 71.4 100	°C/W	
Maximum Lead Temperature for Soldering Purposes, 1/8 in. from case for 10 seconds	ΤL	260	°C	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

When surface mounted to an FR4 board using 1 in pad size 1. $(Cu area = 1.127 in^2).$


- 2. When surface mounted to an FR4 board using the minimum recommended pad size (Cu area = 0.412 in^2).

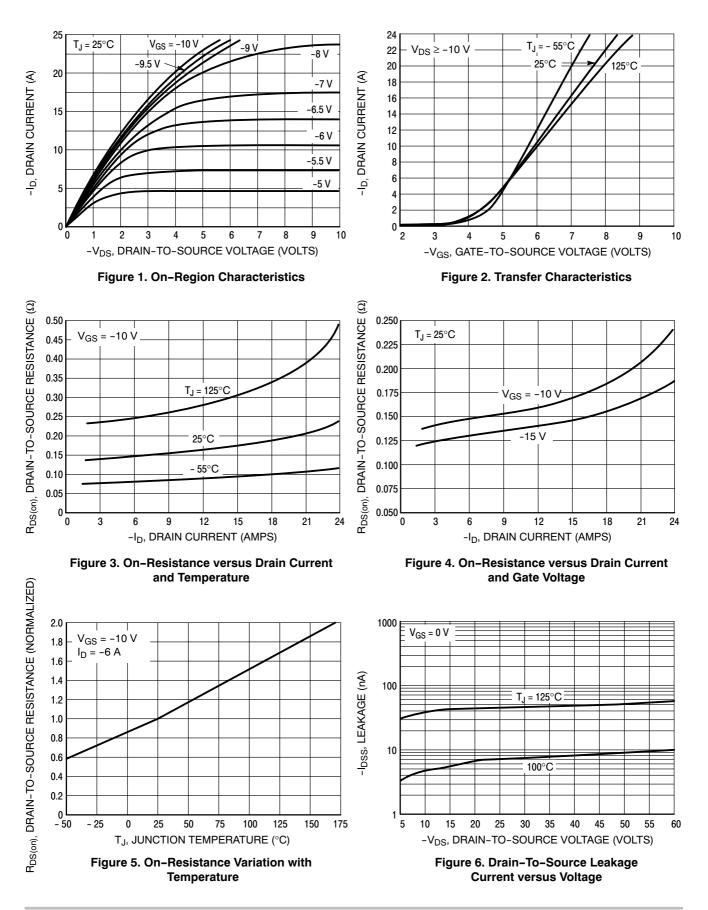


ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX
-60 V	155 mΩ @ -10 V, 6 A	-12 A

ORDERING INFORMATION


See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

Characteristic			Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage (Note 3) ($V_{GS} = 0 \text{ Vdc}, I_D = -0.25 \text{ mA}$) (Positive Temperature Coefficient)		V _{(BR)DSS}	-60 -	_ 67		Vdc mV/°C
Zero Gate Voltage Drain Current ($V_{GS} = 0 \text{ Vdc}, V_{DS} = -60 \text{ Vdc}, T_J = 25^{\circ}\text{C}$) ($V_{GS} = 0 \text{ Vdc}, V_{DS} = -60 \text{ Vdc}, T_J = 150^{\circ}\text{C}$)		I _{DSS}			-10 -100	μAdc
Gate-Body Leakage Current (VGS	$_{\rm s}=\pm$ 20 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	-	-	-100	nAdc
ON CHARACTERISTICS (Note 3)			1			
Gate Threshold Voltage $(V_{DS} = V_{GS}, I_D = -250 \ \mu Adc)$ (Negative Temperature Coefficient)		V _{GS(th)}	-2.0	-2.8 4.5	-4.0	Vdc mV/°C
Static Drain-Source On-State Res $(V_{GS} = -10 \text{ Vdc}, I_D = -6.0 \text{ Adc})$	R _{DS(on)}	_	0.155	0.180	Ω	
Drain-to-Source On-Voltage $(V_{GS} = -10 \text{ Vdc}, I_D = -12 \text{ Adc})$ $(V_{GS} = -10 \text{ Vdc}, I_D = -6.0 \text{ Adc}, T_J = 150^{\circ}\text{C})$		V _{DS(on)}		-1.86 -	-2.6 -2.0	Vdc
Forward Transconductance (V_{DS} = 10 Vdc, I_D = 6.0 Adc)		gFS		8.0	-	Mhos
DYNAMIC CHARACTERISTICS			•		•	
Input Capacitance		C _{iss}	-	500	750	pF
Output Capacitance	(V _{DS} = -25 Vdc, V _{GS} = 0 Vdc, F = 1.0 MHz)	C _{oss}	-	150	250	
Reverse Transfer Capacitance	,	C _{rss}	-	50	100	
SWITCHING CHARACTERISTICS	(Notes 3 and 4)					
Turn-On Delay Time		t _{d(on)}	-	10	20	ns
Rise Time	(V _{DD} = −30 Vdc, I _D = −12 A,	t _r	-	45	85	
Turn-Off Delay Time	$V_{GS} = -10 \text{ V}, \text{ R}_{G} = 9.1 \Omega$)	t _{d(off)}	-	26	40	
Fall Time		t _f	-	48	90	
Gate Charge	(V _{DS} = -48 Vdc, V _{GS} = -10 Vdc, I _D = -12 A)	QT	-	15	30	nC
		Q _{GS}	-	4.0	-	
		Q _{GD}	-	7.0	-	
DRAIN-SOURCE DIODE CHARA	CTERISTICS (Note 3)					
Diode Forward On-Voltage ($I_S = 12 \text{ Adc}, V_{GS} = 0 \text{ V}$) ($I_S = 12 \text{ Adc}, V_{GS} = 0 \text{ V}, T_J = 150^{\circ}\text{C}$)		V _{SD}		-1.6 -1.3	-2.5 -	Vdc
Reverse Recovery Time (I_S = 12 A, dI_S/dt = 100 A/ μ s ,V _{GS} = 0 V)		t _{rr}	-	50		ns
		ta	-	40	-	
		t _b	-	10	-	1
Reverse Recovery Stored Charge		Q _{RR}	-	0.10	-	μC

Indicates Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
Switching characteristics are independent of operating junction temperature.

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

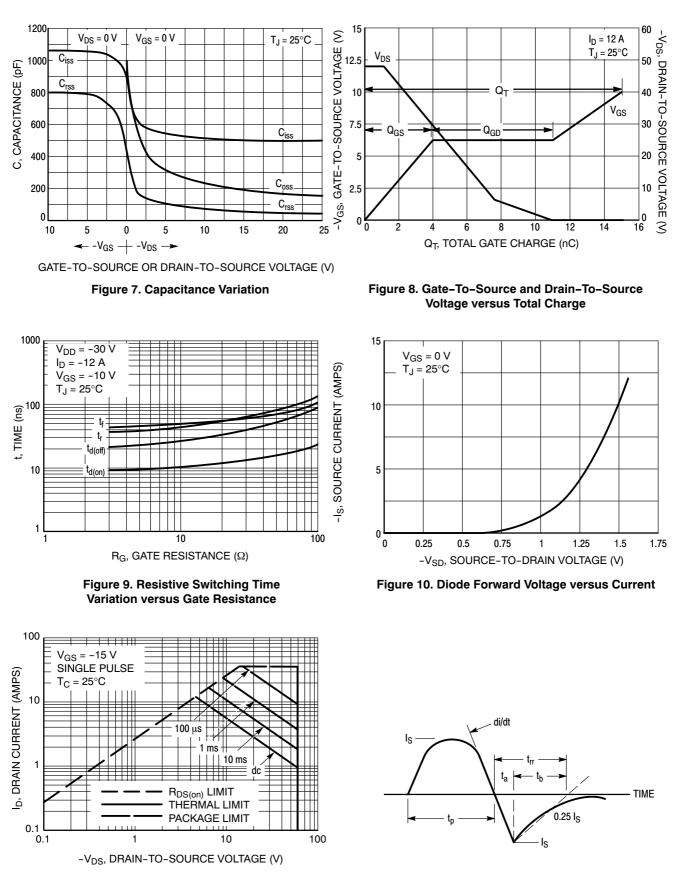


Figure 12. Diode Reverse Recovery Waveform

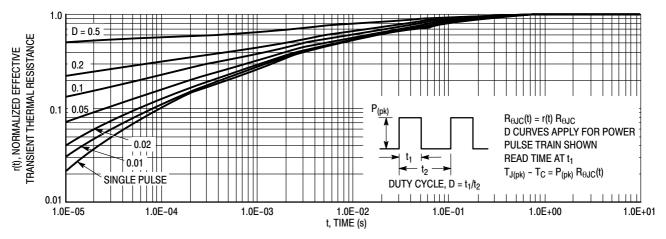
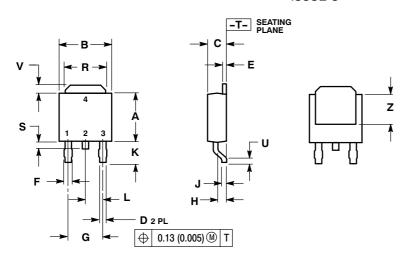


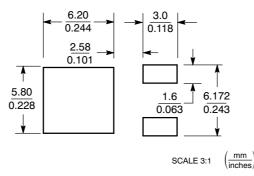
Figure 13. Thermal Response


ORDERING INFORMATION

Device	Package	Shipping [†]	
NTD2955	DPAK		
NTD2955G	DPAK (Pb-Free)	75 Units / Rail	
NTD2955-001	DPAK-3		
NTD2955-1G	DPAK-3 (Pb-Free)	75 Units / Rail	
NTD2955T4	DPAK		
NTD2955T4G	DPAK (Pb-Free)	2500 / Tape & Reel	
NTD2955PT4G	DPAK (Pb-Free)		

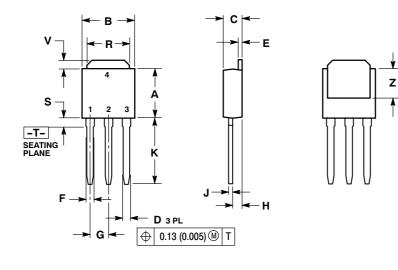
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS


DPAK CASE 369C-01 ISSUE O

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.235	0.245	5.97	6.22	
В	0.250	0.265	6.35	6.73	
С	0.086	0.094	2.19	2.38	
D	0.027	0.035	0.69	0.88	
Е	0.018	0.023	0.46	0.58	
F	0.037	0.045	0.94	1.14	
G	0.180 BSC		4.58 BSC		
Н	0.034	0.040	0.87	1.01	
J	0.018	0.023	0.46	0.58	
К	0.102	0.114	2.60	2.89	
L	0.090 BSC		2.29 BSC		
R	0.180	0.215	4.57	5.45	
S	0.025	0.040	0.63	1.01	
U	0.020		0.51		
V	0.035	0.050	0.89	1.27	
Z	0.155		3.93		

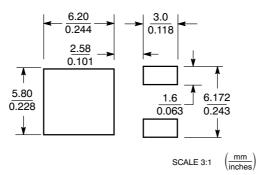
STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN


SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH. 2. INCHES MILLIMETERS DIM MIN MAX A 0.235 0.245 DIM MIN MAX 5.97 6.35 в 0.250 0.265 6.35 6.73 С 0.086 0.094 2.19 2.38 **D** 0.027 0.035 0.69 0.88
 0.018
 0.023
 0.46
 0.58


 0.037
 0.045
 0.94
 1.14
 E F 0.94 1.14 2.29 BSC G 0.090 BSC H 0.034 0.040 0.87 1.01 J 0.018 0.023 0.46 0.58 K 0.350 0.380 8.89 9.65 R 0.180 0.215 4.45 5.45 s V 0.025 0.040 0.63 1.01 0.035 0.050 0.89 1.27 0.155 3.93

1. DIMENSIONING AND TOLERANCING PER

NOTES

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use payes that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative