

Offline Step-down LED Controller With PFC and No Auxiliary Winding

Parameters Subject to Change Without Notice

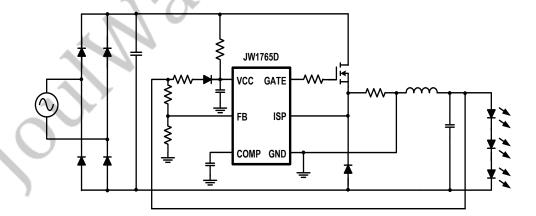
DESCRIPTION

The JW[®]1765D is a constant current LED controller with high current accuracy which applies to single stage step-down power factor corrected LED drivers.

High accuracy of output current is achieved by sampling the output current directly. Critical conduction mode operation reduces the switching losses and largely increases the efficiency. JW1765D is supplied from the output directly, and auxiliary winding is not needed.

JW1765D has multi-protection functions which largely enhance the safety and reliability of the system, including VCC over-voltage protection, VCC UVLO, short-circuit protection, LED open protection, cycle-by-cycle current limit and over-temperature protection.

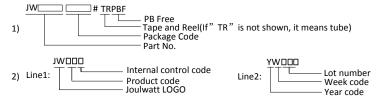
Company's Logo is Protected, "JW" and "JOULWATT" are Registered Trademarks of JoulWatt technology Inc.

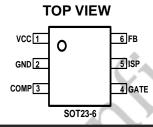

FEATURES

- No auxiliary winding
- High current accuracy of line and load regulation
- High power factor with low output current-ripple
- Critical conduction mode
- High efficiency over wide operating range
- Cycle-by-cycle current limit
- LED short protection
- LED open protection
- Over-temperature protection
- Compact SOT23-6 package

APPLICATIONS

Non-isolation Offline LED driver


TYPICAL APPLICATION


ORDER INFORMATION

DEVICE ¹⁾	PACKAGE	TOP MARKING ²⁾	
JW1765DSOTB#TRPBF	COT33 C	JWEH□	
	SOT23-6	YW□□□	

Notes:

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATING¹⁾

VCC PIN	43V
COMP, ISP, FB Pins	0.3V to 6.5V
Junction Temperature ^{2) 3)}	150°C
Lead Temperature	260°C
Storage Temperature	65°C to +150°C
ESD Susceptibility (Human Body Model)	2kV

RECOMMENDED OPERATING CONDITIONS

FB PIN	0.8V to 1.4V
Operating Junction Temp (T _J)	-40°C to 125°C

THERMAL PERFORMANCE⁴⁾

SOT23-6220.....130°C/W

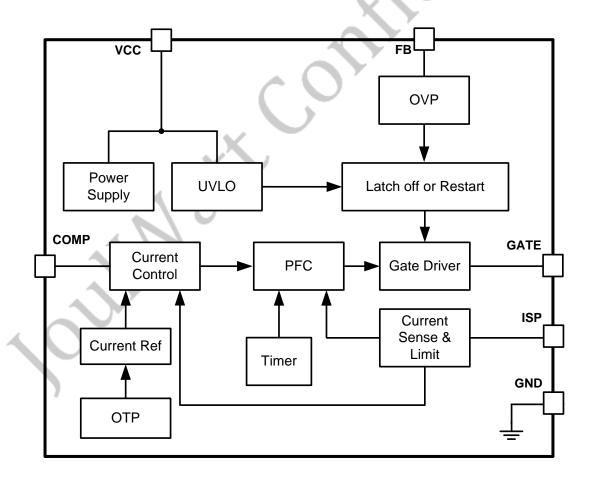
Note:

- 1) Exceeding these ratings may damage the device.
- 2) Guarantees robust performance from -40°C to 150°C junction temperature. The junction temperature range specification is assured by design, characterization and correlation with statistical process controls.
- 3) Includes thermal protection that is intended to protect the device in overload conditions. Thermal protection is active when junction temperature exceeds the maximum operating junction temperature. Continuous operation over the specified absolute maximum operating junction temperature may damage the device.
- 4) Measured on JESD51-7, 4-layer PCB.

 θ_{IC}

 θ_{IA}

ELECTRICAL CHARACTERISTICS


$T_A = 25$ °C, unless otherwise stated.						
Item	Symbol	Condition	Min.	Тур.	Max.	Units
V _{CC} Turn-On Voltage	V _{CC_ON}			18.2		V
V _{CC} Turn-off Low Voltage	V _{CC_OFF_L}			7.6		V
V _{CC} Hysteresis	V _{CC_HYS}	V _{CC_ON} -V _{CC_OFF_L}		10.6	<	V
V _{CC} Clamp Voltage	V_{CC_OVTH}			20.4	. (>
V _{CC} Shunt Regulator Current Limit	I _{CC_SHUNT}	V _{CC} = 24V	4	6	8	mA
V _{CC} Quiescent Current	ΙQ	V _{CC} <v<sub>CC_ON</v<sub>		45	70	uA
V _{CC} Operation Current	Io			300	500	uA
FB High Voltage Threshold	V_{FB_H}			1.6		V
FB Low Voltage Threshold	V_{FB_L}		•	0.2		V
ISP Sample Value	V_{ISP}		0.194	0.200	0.206	V
V _{ISP} Limit Value	V _{ISP_LIMIT}			1		V
Leading Edge Blanking Time	T _{LEB}			350		ns
Maximum Frequency	F _{MAX}	~ O *		150		kHz
Maximum MOS ON Time	T _{ONMAX}			18		us
Maximum MOS OFF Time	T _{OFFMAX}	,		150		us
Minimum MOS OFF Time	T _{OFFMIN}			3		us
Over Temperature Protection Threshold ⁵⁾	T _{OTP}			142.5		$^{\circ}$

⁵⁾ Guaranteed by design.

PIN DESCRIPTION

Pin	Name	Description		
1 VCC	VCC	Power Supply Pin. This pin supplies current to the internal start-up circuit. This pin must be		
	VCC	bypassed with a capacitor nearby.		
2	GND	Ground		
3 COMP	Compensation Pin for Internal Error Amplifier. Connect a capacitor between the pin and			
	GND to compensate the internal feedback loop.			
4	GATE	Gate Driver for the External Main MOSFET Switch.		
5	ISP	Output current sense Pin. The pin is used for output current control.		
6 FB	FR	Voltage Loop Feedback Pin. FB is used to detect LED open by sampling the output		
	1 0	voltage.		

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

The JW1765D is a constant current LED controller which applies to non-isolation step-down LED system with power factor correction. JW1765D can achieve excellent line and load regulation, high efficiency and low BOM cost.

Start Up

When the pull-up resistor charges VCC up to VCC Turn-On Voltage(V_{CC_ON}), the gate drive signal begins to switch, and the output begins to provide power to the VCC pin when the output is enough. An internal voltage clamp is attached to the VCC pin to prevent VCC from being too high. When VCC is lower than VCC Turn-Off Voltage(V_{CC_OFF}), it stops switching.

Loop Compensation

An integrator configuration is applied to the output current feedback loop with a capacitor connected to the COMP pin. For offline applications, the crossover frequency should be set much less than the line frequency of 120Hz or 100Hz. To have a good PFC performance, a capacitor of 1µF connected to COMP pin is recommended.

Constant Current Control

The JW1765D controls the output current from the information of the current sensing resistor. The output LED mean current can be calculated as:

$$I_{LED} = V_{ISP} / R_{CS}$$

Where

V_{ISP} – ISP sample reference;

R_{CS} – The sensing resistor connected between ISP and GND.

Critical Conduction Mode Operation

JW1765D works in the critical conduction mode of the inductor current. When the external power

MOSFET turns on, the inductor current begins to increase from zero. The turn on time of the MOSFET can be calculated as:

$$T_{ON} = I_{PK} \times L / (V_{IN} - V_{LED})$$

Where,

L -inductance.

I_{PK} – peak current in one switch period.

 V_{IN} – input voltage after rectification and filtering.

V_{LED} – output LED voltage.

When the power MOSFET turns off, the inductor current begins to decrease. The power MOSFET turns on again when the inductor current is zero. The turn off time of the MOSFET can be calculated as:

$$T_{OFF} = I_{PK} \times L / V_{LED}$$

And the inductance of the system can be calculated as:

 $L = V_{LED} \times (V_{IN} - V_{LED}) / (f \times I_{PK} \times V_{IN})$ Where, f is the switching frequency.

Over Temperature Protection

When JW1765D is hotter than 142.5 $^{\circ}$ C, the COMP voltage is pulled down by an internal current thus reduces the output current.

LED Open Protection

The output voltage can be detected by the FB pin. When the FB voltage is higher than FB High Voltage Threshold(V_{FB_H}), the LED open protection is triggered and the power MOSFET gate driver stops switching. VCC is discharged and charged repeatedly until the output is recovered to normal state.

The recommended FB pin voltage is about 1.2V at rated output, and it's pull-up resistor is typically in hundreds $K\Omega$ level.

LED short protection

JW1765D judges LED short from the FB voltage. During a shorted LED condition, JW1765D

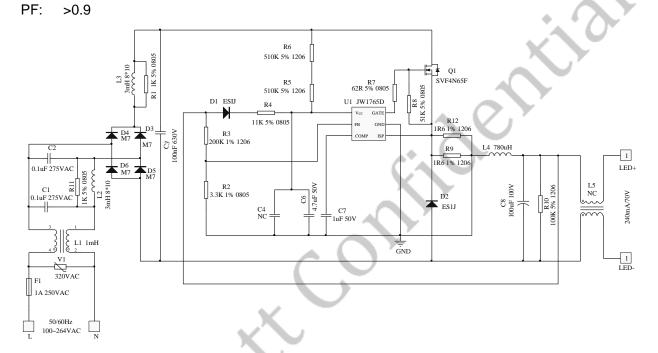
reduces the internal command current to a very low level and slows down the switching frequency.

If LED short or LED open protection are false triggered by unreasonable PCB layout, a 20pF capacitor could be paralleled to FB pin and GND.

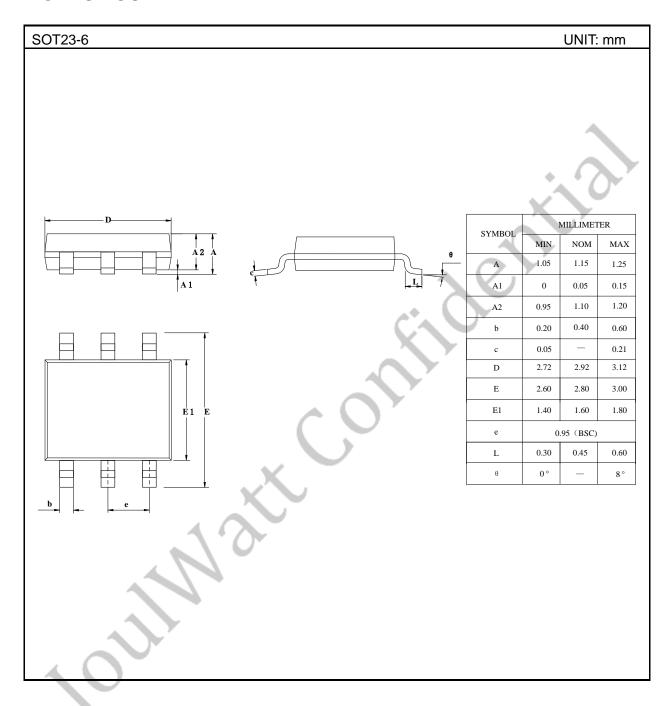
PCB Layout Guidelines

1. The VCC pin must be locally bypassed with a capacitor.

- Make the area of the power loop as small as possible in order to reduce the EMI radiation.
- 3. The chip should be far away from the heating components, such as MOSFET, transformer and diode.
- 4. Note the chip ground is not connected to the cathode of the input capacitor as usual.


REFERENCE DESIGN

This reference design is suitable for $10 \sim 20W$ non-isolated Step-down LED driver, using JW1765D, with high efficiency, excellent line regulation.


Reference 1:

V_{IN}: 90VAC~264VAC

 V_{OUT} : 40~75V I_{OUT} : 240mA

PACKAGE OUTLINE

IMPORTANT NOTICE

Joulwatt Technology Inc. reserves the right to make modifications, enhancements, improvements,
 corrections or other changes without further notice to this document and any product described herein.

- Any unauthorized redistribution or copy of this document for any purpose is strictly forbidden.
- Joulwatt Technology Inc. does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Copyright © 2019 JW1765D Incorporated.

All rights are reserved by Joulwatt Technology Inc.