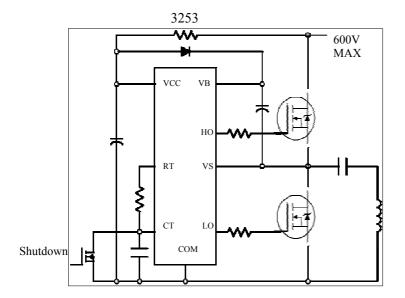
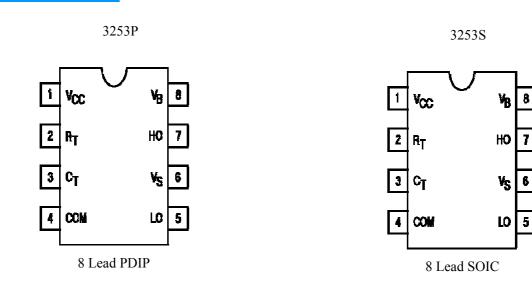
High Voltage half bridge driver


General Description

The 3253 are an high voltage half bridge driver which incor-porates a high voltage half-bridge gate driver with a front end oscillator similar to the industry standard CMOS 555 timer. The 3253 provides more functionality and is easier to use. A shutdown feature has been designed into the CT pin, so that both gate driver outputs can be disabled using a low voltage control signal. In addition, the gate driver output pulse widths are the same once the rising undervoltage lockout threshold on VCC has been reached, resulting in a more stable profile of frequency vs time at startup. Noise immunity has been improved significantly, both by lowering the peak di/dt of the gate drivers, and by increasing the undervoltage lockout hysteresis to 1V. Finally, special attention has been payed to maximizing the latch immunity of the device, and providing comprehensive ESD protection on all pins.

Key Features

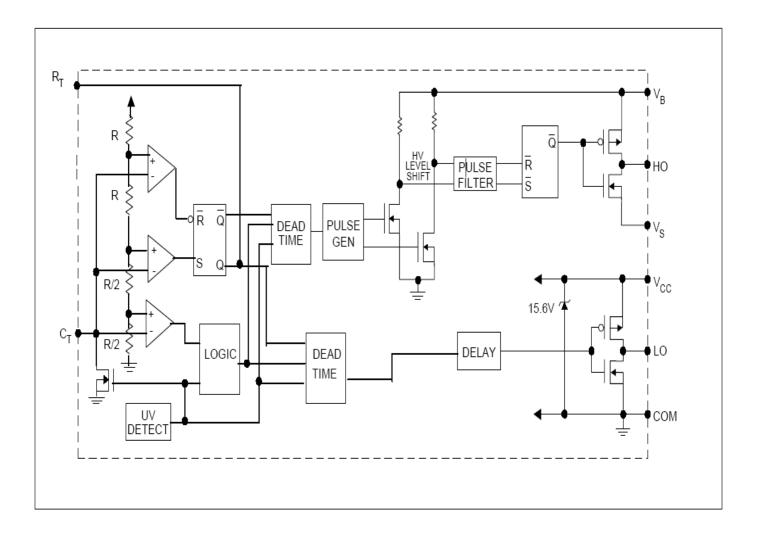

- Integrated 600V half-bridge gate driver
- 15.6V zener clamp on Vcc
- True micropower start up
- Tighter initial deadtime control
- Low temperature coefficient deadtime
- Shutdown feature (1/6th Vcc) on CT pin
- Increased undervoltage lockout Hysteresis (1V)
- Lower power level-shifting circuit
- Constant LO, HO pulse widths at startup
- Lower di/dt gate driver for better noise immunity
- Low side output in phase with RT
- Excellent latch immunity on all inputs and outputs
- ESD protection on all leads
- Also available LEAD-FREE

Typical Application

High Voltage half bridge driver

Pin Assignments

Absolute Maximum Ratings


Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage param- eters are absolute voltages referenced to COM, all currents are defined positive into any lead. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units
VB	High side floating supply voltage	-0.3	625	
VS	High side floating supply offset voltage	VB - 25	VB + 0.3	
VHO	High side floating output voltage	VS - 0.3	VB + 0.3	V
VLO	Low side output voltage	-0.3	VCC + 0.3	
VRT	RT pin voltage	-0.3	VCC + 0.3	
VCT	CT pin voltage	-0.3	VCC + 0.3	
ICC	Supply current (note 1)	—	25	
IRT	RT pin current	-5	5	mA
dVs/dt	Allowable offset voltage slew rate	-50	50	V/ns
	Maximum power dissipation @ $TA \le +25^{\circ}C$ (8 Lead DIP)	—	1.0	
PD	(8 Lead SOIC)	—	0.625	W
RthJA	Thermal resistance, junction to ambient (8 Lead DIP)	—	125	
	(8 Lead SOIC)	—	200	°C/W
TJ	Junction temperature	-55	150	
TS	Storage temperature	-55	150	°C
TL	Lead temperature (soldering, 10 seconds)	—	300	Ŭ

High Voltage half bridge driver

Block Diagram

Functional Block Diagram for 3253

High Voltage half bridge driver

Electrical Characteristic

 $V_{BIAS}(V_{CC}, V_{BS}) = 12V$, CL = 1000 pF, CT = 1 nF and $TA = 25^{\circ}C$ unless otherwise specified. The V_{IN}, V_{TH} and I_{IN} parameters are referenced to COM. The Vo and Io parameters are referenced to COM and are applicable to the respective output leads: Ho or Lo.

Low Vol	tage Supply Characteristics					
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
Vccuv+	Rising Vcc undervoltage lockout threshold	8.1	9.0	9.9		
Vccuv-	Falling $V\!\!\!\!\operatorname{Cc}$ undervoltage lockout threshold	7.2	8.0	8.8	v	
VCCUVH	Vcc undervoltage lockout Hysteresis	0.5	1.0	1.5	v	
Iqccuv	Micropower startup VCC supply current		75	150		$Vcc \leq Vccuv$ -
Iqcc	Quiescent VCC supply current		500	950	μA	
VCLAMP	Vcc zener clamp voltage	14.4	15.6	16.8	V	$I_{CC} = 5mA$
Floating	Supply Characteristics					
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
Iqbsuv	Micropower startup VBS supply current		0	10		$V_{CC} \leq V_{CCUV}$ -
Iqbs	Quiescent VBS supply current	_	30	50	μA	
VBSMIN	Minimum required VBS voltage for proper functionality from RT to HO	_	4.0	5.0	V	$V_{CC}=V_{CCUV+} + 0.1V$
Ilk	Offset supply leakage current	_	_	50	μΑ	VB = VS = 600V
Oscillato	r I/O Characteristics		1			
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
fosc	Oscillator frequency	19.4	20	20.6	kHz	RT = 36.9 kW
1050		94	100	106	KHZ	RT = 7.43 kW
d	RT pin duty cycle	48	50	52	%	fo < 100kHz
ICT	CT pin current	—	0.001	1.0	uA	
ICTUV	UV-mode CT pin pulldown current	0.30	0.70	1.2	mA	VCC = 7V
VCT+	Upper CT ramp voltage threshold	—	8.0	—		
VCT-	Lower CT ramp voltage threshold		4.0	—	V	
VCTSD	CT voltage shutdown threshold	1.8	2.1	2.4		
VRT+	High-level RT output voltage, VCC - VRT		10 100	50 300		$IRT = 100\mu A$ $IRT = 1mA$
VRT-	Low-level RT output voltage	_	10 100	50 300	1	$IRT = 100\mu A$ $IRT = 1mA$
VRTUV	UV-mode RT output voltage		0	100	1	Vcc≤Vccuv-
UDTOD	SD-Mode RT output voltage, VCC - VRT	—	10	50	mV	$I_{RT} = 100 \mu A$ $V_{CT} = 0V$
VRTSD			10	300		$I_{RT} = 1 mA$ $V_{CT} = 0V$

High Voltage half bridge driver

Electrical Characteristic

(Continued)

Gate Driver Output Characteristics						
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
VOH	High level output voltage, VBIAS -Vo	_	0	100		Io = OA
VOL	Low-level output voltage, VO	_	0	100		Io = OA
VOLUV	UV-mode output voltage, VO	_	0	100	mV	Io=OA Vcc≤Vccuv-
tr	Output rise time	_	80	150		
tf	Output fall time		45	100	nsec	
tsd	Shutdown propogation delay		660			
td	Output deadtime (HO or LO)	0.75	1.20	1.65	μsec	

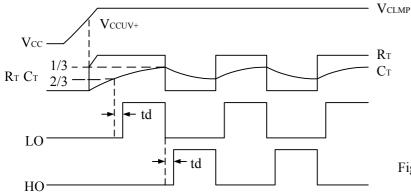
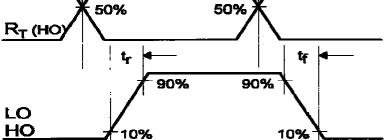



Figure 1. Input/Output Timing Diagram

RT (LO

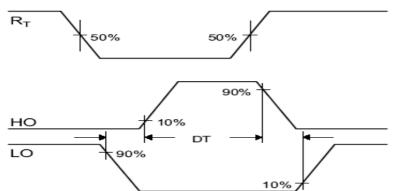
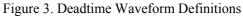
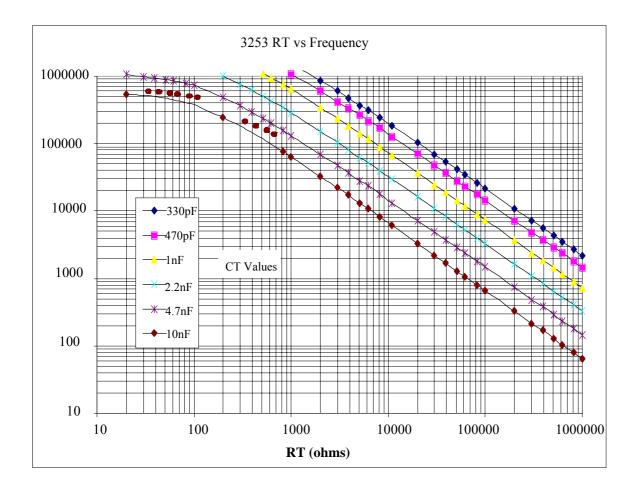
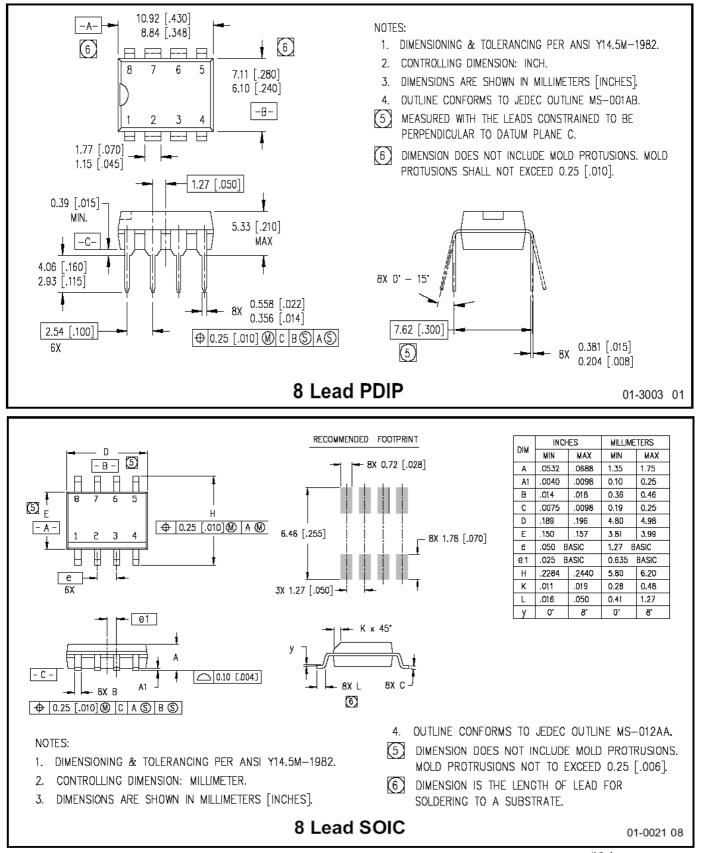



Figure 2. Switching Time Waveform Definitions


High Voltage half bridge driver

Ordering Information

Leadfree Part	Leadfree Part
8-Lead PDIP 3253P order 3253P	8-Lead SOIC 3253S order 3253S


Recommended Component Values

Symbol	Component	Min.	Max.	Units
RT	Timing resistor value	10	_	kΩ
СТ	CT pin capacitor value	330	_	pF

High Voltage half bridge driver

Mechanical Dimensions

