Features

- >90% Efficiency
- 8V to 450V input range
- Constant-current LED driver
- Applications from a few mA to more than 1A Output
- LED string from one to hundreds of diodes
- PWM Low-Frequency Dimming via Enable pin
- Input Voltage Surge ratings up to 450V

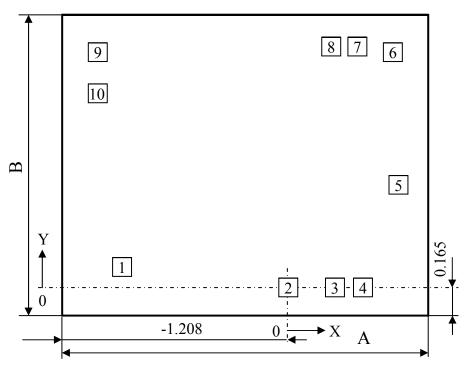
Applications

- DC/DC or AC/DC LED Driver applications
- RGB Backlighting LED Driver
- Back Lighting of Flat Panel Displays
- General purpose constant current source
- Signage and Decorative LED Lighting
- Automotive
- Chargers

Description

The HV9910 is a PWM high-efficiency LED driver ontrol IC. It allows efficient operation of High Brightness (HB) LEDs from voltage sources ranging from 8VDC up to 450VDC. The HV9910 controls an external MOSFHT at fixed switching frequency up to 300 kHz. The frequency can be programmed using a single resistor. The LED string is driven at constant current rather than constant voltage, thus providing constant light output and enhanced reliability. The output current can be programmed between a few milliamps and up to more than 1.0A.

Absolute Maximum Ratings

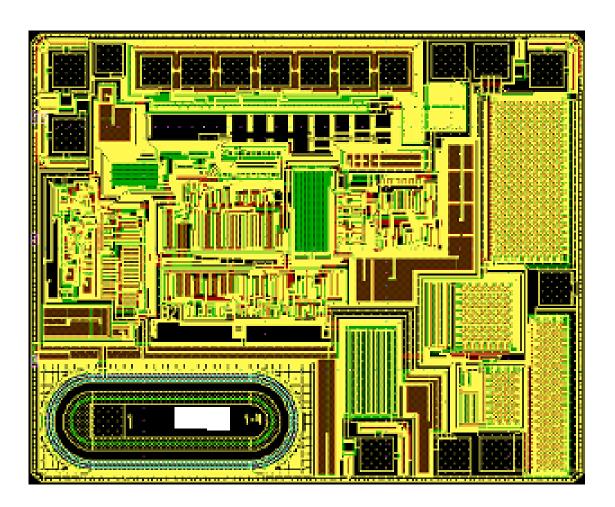

V _{IN} to GND	0.5V to +470V
CS	-0.3V to Vdd + 0.3V
LD, PWM_D to GND	0.3V to (Vdd - 0.3V)
GATE to $\overline{\text{GND}}$	0.3V to (Vdd + 0.3V)
V _{DD MA X}	13.5V
Continuous Power Dissipation ($T_A = +25^{\circ}C$) (N	Note 1)
16-Pin SO (derate 7.5mW/°C above +25°C)	750mW
8-Pin DIP (derate 9mW/°C above +25°C)	900mW
8-Pin SO (derate 6.3mW/°C above +25°C)	630mW
Operating Temperature Range	40°C to +85°C
Junction Temperature	+125°C
Storage Temperature Range	65°C to +150°C
	D

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Symbol	Description	Min	Тур	Max	Units	Conditions
V _{INDC}	Input DC supply voltage range	8.0		450	V	DC input voltage
I_{INsd}	Shut-Down mode supply current		0.5	1	mA	Pin PWM_D to GND, V_{IN} = 8V
V _{DD}	Internally regulated voltage	7.0	7.5	8.0	V	$V_{IN} = 8-450V$, $I_{DD(ext)} = 0$, pin Gate open
V _{DDmax}	Maximal pin V _{DD} voltage			13.5	V	When an external voltage applied to pin V _D
I _{DD(ext)}	V _{DD} current available for external circuitry ¹			1.0	mA	$V_{IN} = 8-100V$
UVLO	V _{DD} undervoltage lockout threshold	6.45	6.7	6.95	V	V _{IN} rising
UVLO	V _{DD} undervoltage lockout hysteresis		500		mV	V _{IN} falling
V _{EN(lo)}	Pin PWM_D input low voltage			1.0	V	$V_{IN} = 8-450V$
V _{EN(hi)}	Pin PWM_D input high voltage	2.4			V	$V_{IN} = 8-450V$
RLN	Pin PWM_D pull-down resistance	50	100	150	kΩ	$V_{\rm EN} = 5V$
V _{CS(hi)}	Current sense pull-in threshold voltage	225	250	275	mV	$@TA = -40^{\circ}C \text{ to } +85^{\circ}C$
	GATE high output voltage	V _{DD} -0.3		V_{DD}	V	$I_{OUT} = -10 \text{ mA}$
	GATE low output voltage	0		0.3	V	$I_{OUT} = 10 \text{ mA}$
fosc	Oscillator frequency	20	25	30	kHz	$Rosc = 1.00 M\Omega$
		80	100	120	kHz	$Rosc = 223 k\Omega$
D _{MAXht}	Maximum Oscillator PWM Duty Cycle			100	%	F_{PWMhf} = 25kHz, at GATE, CS to GND
V _{LD}	Linear Dimming pin voltage range	0		250	mV	$@TA = <85^{\circ}C, V_{IN} = 12V$
T _{BLANK}	Current sense blanking interval	150	215	280	ns	$V_{CS} = 0.55 V_{LD}, V_{LD} = V_{DD}$
	Delay from CS trip to GATE lo			300	ns	$V_{IN} = 12V$, $V_{LD} = 0.15$, $V_{CS} = 0$ to 0.22V after T_{BLANK}
t _{RISE}	GATE output rise time ²		30	50	ns	$C_{GATE} = 500 pF$, 10% to 90% V_{GATE}
t _{FALL}	GATE output fall time ²		30	50	ns	$C_{GATE} = 500 pF$, 90% to 10% V_{GATE}

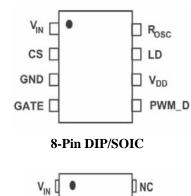
Specifications ($T_A = 25^{\circ}C$ unless noted otherwise)

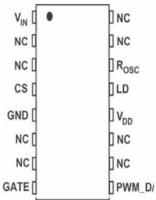
PAD DIAGRAM



- 1. Chip size: X=1.88 mm, Y=1.54 mm (without scribe line width).
- Scribe line width: X=80 µm, Y=80 µm 2.
- 3. Pad size: 100µm x 100 µm
- 4. Substrate to GND.
- 5. Wafer thickness: 460 μ m

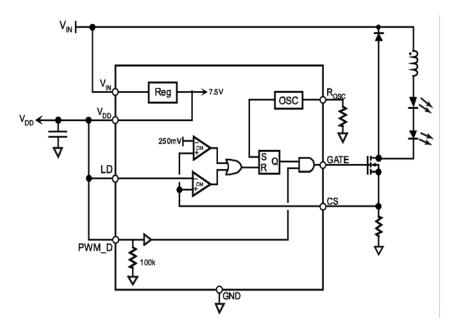
Pad	Pad name	X(µm)	Y(µm)
1	V_{IN}	-887.5	110
2	CS	0	0
3	GND	255.5	0
4	GND	395.5	0
5	GATE	587.0	544.5
6	PWM_D	556.5	1259.5
7	V_{DD}	375.5	1290
8	V_{DD}	235.5	1290
9	LD	-1012.5	1260.5
10	Rosc	-1012.5	1044.5


Pad Location


Photo

Pinout

	Description				
Name	Pad	SO-16	SO-8 DIP-8		
V _{IN}	1	1	1	Input voltage 8V to 450V DC	
CS	2	4	2	Senses LED string current	
GND	3,4	5	3	Device ground	
GATE	5	8	4	Drives the gate of the external MOSFET	
PWM_D	6	9	5	Low Frequency PWM Dimming pin, also Enable input. Internal 100k£2 pull-down to GND	
V _{DD}	7,8	12	6	Internally regulated supply voltage. 7.5V nominal. Can supply up to 1mA for external circuitry. A sufficient storage capacitor is used to provide storage when the rectified AC input is near the zero crossings.	
LD	9	13	7	Linear Dimming by changing the current limit threshold at current sense comparator	
Rosc	10	14	8	Oscillator control. A resistor connected between this pin and ground sets the PWM frequency.	



No Connects (NC) are not internally connected and may be used for pass-thru PCB traces

16-Pin SOIC

