(Acme Micro Electronics (ShenZhen) Co., Ltd

ACM298N

DUAL FULL-BRIDGE DRIVER

- DESCRIPTION

ACM298N is a high voltage, high current dual full-bridge driver designed

to accept standard TTL logic levels and drive inductive loads such as relays,

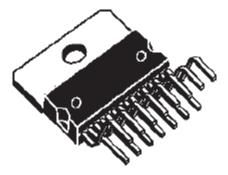
solenoids, DC and stepping motors.

二、 CHARACTERISTIC

1.OPERATING SUPPLY VOLTAGE UP TO 46 V

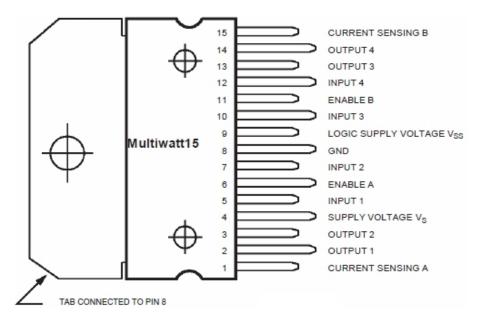
2.TOTAL DC CURRENT UP TO 4 A

3.LOW SATURATION VOLTAGE


4.LOGICAL "0" INPUT VOLTAGE UP TO 1.5 V

5.THE LOGIC POWER SUPPLY AND DRIVE POWER SUPPLY ARE

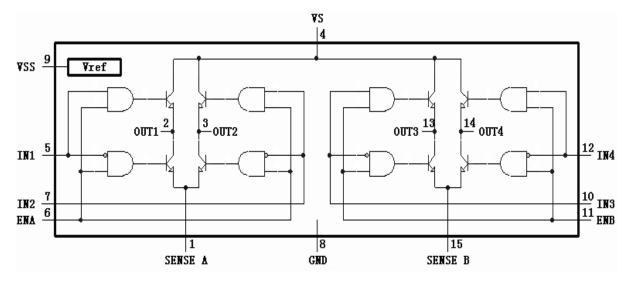
INDEPENDENT OF EACH OTHER


\equiv **.** PIN DEFINITION AND FUNCTION

ACM298N adopts 15 wire Multiwatt package

APPEARANCE OF ACM298N

(Acmehip Acme Micro Electronics (ShenZhen) Co., Ltd



MW.15	Name	Function				
1;15	Sense A; Sense B	Between this pin and ground is connected the sense resistor to control the current of the load.				
2;3	Out 1; Out 2	Outputs of the Bridge A; the current that flows through the load connected between these two pins is monitored at pin 1.				
4	Vs	Supply Voltage for the Power Output Stages. A non-inductive 100nF capacitor must be connected between this pin and ground.				
5;7	Input 1; Input 2	TTL Compatible Inputs of the Bridge A.				
6;11	Enable A; Enable B	TTL Compatible Enable Input: the L state disables the bridge A (enable A) and/or the bridge B (enable B).				
8	GND	Ground.				
9	VSS	Supply Voltage for the Logic Blocks. A100nF capacitor must be connected between this pin and ground.				
10; 12	Input 3; Input 4	TTL Compatible Inputs of the Bridge B.				
13; 14	Out 3; Out 4	Outputs of the Bridge B. The current that flows through the load connected between these two pins is monitored at pin 15.				
-	N.C.	Not Connected				

PINS AND DEFINITIONS OF ACM298N

(Acmehip Acme Micro Electronics (ShenZhen) Co., Ltd

四、 BLOCK DIAGRAM

BLOCK DIAGRAM OF ACM298N

五、 **ELECTRICAL CHARACTERISTICS**

Symbol	Parameter	Test Conditi	Min.	Тур.	Max.	Unit	
Vs	Supply Voltage (pin 4)	Operative Condition		V _{IH} +2.5		46	V
Vss	Logic Supply Voltage (pin 9)			4.5	5	7	V
IS	Quiescent Supply Current (pin 4)	V _{en} = H; I _L = 0	V _i = L V _i = H		13 50	22 70	mA mA
		V _{en} = L	V _i = X			4	mA
I _{SS}	Quiescent Current from V_{SS} (pin 9)	V _{en} = H; IL = 0	V _i = L V _i = H		24 7	36 12	mA mA
		V _{en} = L	$V_i = X$			6	mA
V _{iL}	Input Low Voltage (pins 5, 7, 10, 12)			-0.3		1.5	V
V _{iH}	Input High Voltage (pins 5, 7, 10, 12)			2.3		VSS	V
liL	Low Voltage Input Current (pins 5, 7, 10, 12)	Vi = L				-10	μA
l _{iH}	High Voltage Input Current (pins 5, 7, 10, 12)	$Vi = H \le V_{SS} - 0.6V$			30	100	μA
V _{en} = L	Enable Low Voltage (pins 6, 11)			-0.3		1.5	V
V _{en} = H	Enable High Voltage (pins 6, 11)			2.3		V _{SS}	V
l _{en} = L	Low Voltage Enable Current (pins 6, 11)	V _{en} = L				-10	μA
I _{en} = H	High Voltage Enable Current (pins 6, 11)	$V_{en} = H \le V_{SS} - 0.6V$			30	100	μA
$V_{\text{CEsat}(\text{H})}$	Source Saturation Voltage	I _L = 1A I _L = 2A		0.95	1.35 2	1.7 2.7	V V
$V_{CEsat(L)}$	Sink Saturation Voltage	IL = 1A IL = 2A		0.85	1.2 1.7	1.6 2.3	V V
VCEsat	Total Drop	Ι _L = 1Α Ι _L = 2Α		1.80		3.2 4.9	V V
Vsens	Sensing Voltage (pins 1, 15)			-1		2	V

六、 APPLICATION

1 POWER OUTPUT STAGE

The ACM298N integrates two power output stages (A ; B). The power output stage is a bridge configuration and its outputs can drive an inductive load in common or differenzial mode, depending on the state of the inputs. The current that flows through the load comes out from the bridge at the sense output : an external resistor (RSA ; RSB.) allows to detect the intensity of this current.

2 INPUT STAGE

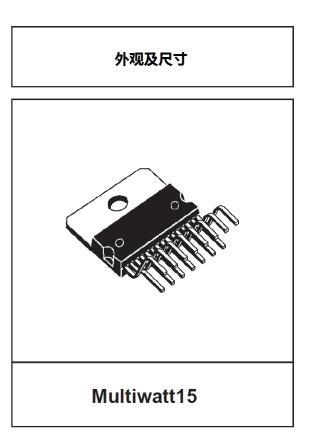
All the inputs are TTL compatible

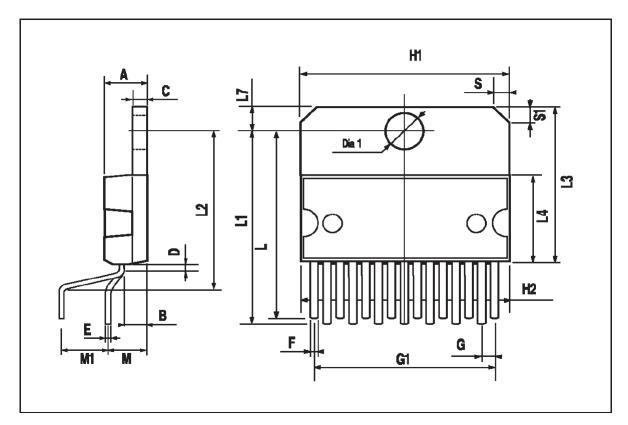
3 POWER

A non inductive capacitor, usually of 100 nF, must be foreseen between both Vs and Vss, to ground, as near as possible to GND pin. The en terminal shall be in L state before the output protection is turned off and on.

4 OUTPUT PROTECTION

The fast diode shall be selected as the output protection when driving inductive load. When I = 2 A, VF $\,\leqslant\,$ 1.2V, TRR $\,\leqslant\,$ 200 ns.

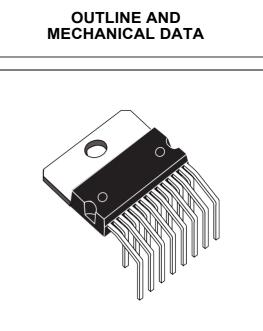

5 PARALLEL CONNECTION

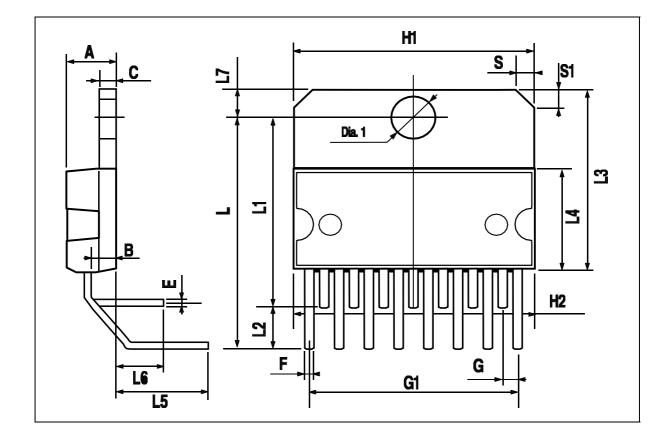

When the driving current is greater than 2A, two groups can be connected in parallel for current expansion.

(Acme Micro Electronics (ShenZhen) Co., Ltd

七、 **DIMENSION**

DIM.	mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α			5			0.197	
В			2.65			0.104	
С			1.6			0.063	
D		1			0.039		
Е	0.49		0.55	0.019		0.022	
F	0.66		0.75	0.026		0.030	
G	1.02	1.27	1.52	0.040	0.050	0.060	
G1	17.53	17.78	18.03	0.690	0.700	0.710	
H1	19.6			0.772			
H2			20.2			0.795	
L	21.9	22.2	22.5	0.862	0.874	0.886	
L1	21.7	22.1	22.5	0.854	0.870	0.886	
L2	17.65		18.1	0.695		0.713	
L3	17.25	17.5	17.75	0.679	0.689	0.699	
L4	10.3	10.7	10.9	0.406	0.421	0.429	
L7	2.65		2.9	0.104		0.114	
М	4.25	4.55	4.85	0.167	0.179	0.191	
M1	4.63	5.08	5.53	0.182	0.200	0.218	
S	1.9		2.6	0.075		0.102	
<mark>S1</mark>	1.9		2.6	0.075		0.102	
Dia1	3.65		3.85	0.144		0.152	




(Acme Micro Electronics (ShenZhen) Co., Ltd

ACM298N

DIM.	mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А			5			0.197	
В			2.65			0.104	
С			1.6			0.063	
Е	0.49		0.55	0.019		0.022	
F	0.66		0.75	0.026		0.030	
G	1.14	1.27	1.4	0.045	0.050	0.055	
G1	17.57	17.78	17.91	0.692	0.700	0.705	
H1	19.6			0.772			
H2			20.2			0.795	
L		20.57			0.810		
L1		18.03			0.710		
L2		2.54			0.100		
L3	17.25	17.5	17.75	0.679	0.689	0.699	
L4	10.3	10.7	10.9	0.406	0.421	0.429	
L5		5.28			0.208		
L6		2.38			0.094		
L7	2.65		2.9	0.104		0.114	
S	1.9		2.6	0.075		0.102	
S1	1.9		2.6	0.075		0.102	
Dia1	3.65		3.85	0.144		0.152	

Multiwatt15 H

